Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 262(Pt 1): 129880, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307427

RESUMO

The preparation and characterization of lignin nanoparticles (LNPs) were described. LNPs were produced via the precipitation technique. Nanocomposites of LNPs with poly (butylene adipate-co-terephthalate) (PBAT) were prepared by melt mixing with various concentrations up to 6 wt% of LNPs. The assessment of the effects of LNP addition on the mechanical, thermal, morphological, cytotoxicity, antioxidant, antibacterial, and antiviral properties of nanocomposites was carefully performed. The addition of LNPs to PBAT enhances the thermal stability of the nanocomposites. The antioxidant effect of LNPs on PBAT increased with increasing filler content. LNPs showed higher efficiency as antioxidant agents than lignin particles (LP). The tensile modulus increased by 20 % for the nanocomposites with 6 % LNPs in comparison with neat PBAT. The crystallization peak temperature of PBAT was 80 °C, which increased to 104.6 °C with the addition of 6 wt% of LNPs, suggesting their strong nucleation activity. Antibacterial tests demonstrated the bacteriostatic activities of LNP, LP, and nanocomposites. Both LP and LNP showed considerable antiviral activity against herpes simplex virus type 1 and human coronavirus 229e. The antiviral activity of LNP was concentration-dependent. The findings suggest that LNP is a promising bio-additive for PBAT and can enhance its properties for various applications, including food packaging.


Assuntos
Alcenos , Nanopartículas , Ácidos Ftálicos , Poliésteres , Humanos , Poliésteres/química , Lignina/farmacologia , Antioxidantes/farmacologia , Antibacterianos/farmacologia , Adipatos , Nanopartículas/química , Antivirais/farmacologia
2.
Viruses ; 15(10)2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37896801

RESUMO

(1) Background: Epigallocatechin gallate (EGCG) has been recognized as a flavonoid showing antiviral activity against various types of DNA and RNA viruses. In this work, we tested if EGCG-modified silver nanoparticles (EGCG-AgNPs) can become novel microbicides with additional adjuvant properties to treat herpes infections. (2) Methods: The anti-HSV and cytotoxic activities of EGCG-AgNPs were tested in human HaCaT and VK-2-E6/E7 keratinocytes. HSV-1/2 titers and immune responses after treatment with EGCG-AgNPs were tested in murine models of intranasal HSV-1 infection and genital HSV-2 infection. (3) Results: EGCG-AgNPs inhibited attachment and entry of HSV-1 and HSV-2 in human HaCaT and VK-2-E6/E7 keratinocytes much better than EGCG at the same concentration. Infected mice treated intranasally (HSV-1) or intravaginally (HSV-2) with EGCG-AgNPs showed lower virus titers in comparison to treatment with EGCG alone. After EGCG-AgNPs treatment, mucosal tissues showed a significant infiltration in dendritic cells and monocytes in comparison to NaCl-treated group, followed by significantly better infiltration of CD8+ T cells, NK cells and increased expression of IFN-α, IFN-γ, CXCL9 and CXCL10. (4) Conclusions: Our findings show that EGCG-AgNPs can become an effective novel antiviral microbicide with adjuvant properties to be applied upon the mucosal tissues.


Assuntos
Herpes Genital , Herpes Simples , Herpesvirus Humano 1 , Nanopartículas Metálicas , Animais , Humanos , Camundongos , Prata/farmacologia , Herpes Simples/tratamento farmacológico , Herpes Genital/tratamento farmacológico , Herpesvirus Humano 2 , Antivirais/farmacologia
3.
J Immunol Res ; 2023: 3072573, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36726490

RESUMO

Many studies have demonstrated a general decline and dysregulation in immune functions with age. It is not clear, however, how the aging affects the immune surveillance of the female reproductive tract (FRT) by γδ T cells, a unique population of T lymphocytes that was shown to regulate homeostasis of epithelial barriers. First, we analyzed γδ T cell presence in FRT in young (2 months) and old (18 months) wild-type (WT) C57BL/6 mice. We did not detect any changes in γδ T cell number nor distribution in the vaginas between the age groups, while in uteri, there was a twofold increase in γδ T cell number in aged mice. To check if γδ T lymphocytes regulate a metabolic and immune status of aging vaginal tissue, we compared the expression of 84 aging-associated genes in young and old WT and γδ T-cell-deficient (Tcrd -/-) mice. We discovered that only the Ltf (lactotransferrin) gene was downregulated in old Tcrd -/- mice. In both mouse strains, we found similar age-dependent changes in cytokine production upon vaginal inflammation due to Toll-like receptor 9 (TLR9) stimulation with CpG. With age in the vaginas, IL-1α and IL-17A levels increased while IL-6, IL-10, MCP-1, and IFNγ levels were diminished in response to CpG. Similar trends were observed in uteri. Interestingly, under the inflammatory state, the lack of γδ T cells in young individuals enhanced MCP-1 production in the vagina and decreased MCP-1 level in the uterus in old females. Our gene expression data point to an antimicrobial role of γδ T lymphocytes. The profile of secreted inflammatory cytokines shifted during aging toward the proinflammatory type, and γδ T cells played a modest fine-tuning role in immunoregulation in aged FRT. We believe this work expands our understanding of γδ T cell functions and the inflammaging in the murine reproductive epithelia.


Assuntos
Linfócitos Intraepiteliais , Receptores de Antígenos de Linfócitos T gama-delta , Camundongos , Feminino , Animais , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Mucosa/metabolismo , Vagina , Linfócitos Intraepiteliais/metabolismo
4.
J Inorg Biochem ; 240: 112108, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36592510

RESUMO

In this study, three new organic ligands N'-(benzylidene)-6-chloropyrazine-2-carbohydrazonamide (L1), 6-chloro-N'-(4-nitrobenzylidene)picolinohydrazonamide(L2), and N'-(benzylidene)-4-chloropicolinohydrazonamide (L3) and three copper coordination compounds (Cu(L1)Cl2, Cu(L2)Cl2 and Cu(L3)Cl2) based on them were synthesized. All obtained compounds were characterized using appropriate analytical techniques: elemental analysis (EA), thermogravimetric analysis (TG-DTG), Fourier transform infrared spectroscopy (FTIR) and flame-atomic absorption spectrometry (F-AAS). These methods of physicochemical analyses helped to assume that the complexation in three cases proceeds in a bidentate manner. The X-ray investigation confirmed the synthesis pathway and molecular structures for L1 and L3 ligands. The antimicrobial activity of the obtained compounds was then comprehensively investigated, where Cu(L3)Cl2 showed the strongest antibacterial properties against all tested bacteria (Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli). LN229 human glioma cells and BJ human normal fibroblasts cells were treated with tested compounds and their cytotoxicity was evaluated with MTT test. The effect of complexing on antitumor activity has been investigated. The ligand L1 and its complex showed similar activity against normal cells while complexation increases toxicity against cancer cells in concentrations of 50 and 100 µM. For the one pair of ligand/complex compounds the apoptosis detection, cell cycle analysis and gene expression analysis (qRT-PCR) were performed. Cu(L1)Cl2 showed the stronger toxic effect in comparison with L1 due to the population of early apoptotic cells which revealed metabolic activity in MTT assay.


Assuntos
Complexos de Coordenação , Cobre , Humanos , Cobre/química , Ligantes , Estrutura Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/farmacologia , Complexos de Coordenação/química
5.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36361890

RESUMO

Metallic nanoparticles exhibit broad-spectrum activity against bacteria, fungi, and viruses. The antiviral activity of nanoparticles results from the multivalent interactions of nanoparticles with viral surface components, which result from the nanometer size of the material and the presence of functional compounds adsorbed on the nanomaterial surface. A critical step in the virus infection process is docking and entry of the virus into the host cell. This stage of the infection can be influenced by functional nanomaterials that exhibit high affinity to the virus surface and hence can disrupt the infection process. The affinity of the virus to the nanomaterial surface can be tuned by the specific surface functionalization of the nanomaterial. The main purpose of this work was to determine the influence of the ligand type present on nanomaterial on the antiviral properties against herpes simplex virus type 1 and 2. We investigated the metallic nanoparticles (gold and silver) with different sizes (5 nm and 30 nm), coated either with polyphenol (tannic acid) or sulfonates (ligands with terminated sulfonate groups). We found that the antiviral activity of nano-conjugates depends significantly on the ligand type present on the nanoparticle surface.


Assuntos
Herpesvirus Humano 1 , Nanopartículas Metálicas , Nanopartículas , Polifenóis/farmacologia , Ligantes , Antivirais/farmacologia , Alcanossulfonatos
6.
Microorganisms ; 10(11)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36363754

RESUMO

Neuroinfections caused by herpesviruses, mainly by HHV-1, represent a significant problem for modern medicine due to the small number of therapeutic substances available in the pharmaceutical sector. Furthermore, HHV-1 infection has been linked to neurodegenerative processes such as Alzheimer's disease, which justifies the search for new effective therapies. The development of nanotechnology opens up new possibilities for the treatment of neuroinflammation. Gold and silver nanoparticles are gaining popularity, and the number of clinical trials involving metallic nanoparticles is constantly increasing. This paper reviews the research on gold and silver nanoparticles and their potential use in the treatment of herpesvirus neuroinfection.

7.
Materials (Basel) ; 15(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36079542

RESUMO

Textile structures with various bioactive and functional properties are used in many areas of medicine, special clothing, interior textiles, technical goods, etc. We investigated the effect of two different textile woven structures made of 90% polyester with 10% polyamide (PET) and 100% cotton (CO) modified by magnetron sputtering with copper (Cu) on bioactive properties against Gram-positive and Gram-negative bacteria and four viruses and also on the some comfort parameters. PET/Cu and CO/Cu fabrics have strong antibacterial activity against Staphylococcus aureus and Klebsiella pneumonia. CO/Cu fabric has good antiviral activity in relation to vaccinia virus (VACV), herpes simplex virus type 1 (HSV-1) and influenza A virus H1N1 (IFV), while its antiviral activity against mouse coronavirus (MHV) is weak. PET/Cu fabric showed weak antiviral activity against HSV-1 and MHV. Both modified fabrics showed no significant toxicity in comparison to the control medium and pristine fabrics. After Cu sputtering, fabric surfaces became hydrophobic and the value of the surface free energy was over four times lower than for pristine fabrics. The modification improved thermal conductivity and thermal diffusivity, facilitated water vapour transport, and air permeability did not decrease.

8.
Pharmaceutics ; 14(9)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36145610

RESUMO

Lactoferrin is an iron-binding glycoprotein with multiple functions in the body. Its activity against a broad spectrum of both DNA and RNA viruses as well as the ability to modulate immune responses have made it of interest in the pharmaceutical and food industries. The mechanisms of its antiviral activity include direct binding to the viruses or its receptors or the upregulation of antiviral responses by the immune system. Recently, much effort has been devoted to the use of nanotechnology in the development of new antivirals. In this review, we focus on describing the antiviral mechanisms of lactoferrin and the possible use of nanotechnology to construct safe and effective new antiviral drugs.

9.
Int J Biol Macromol ; 222(Pt A): 856-867, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36174868

RESUMO

In the present work, a solution blow spun nanofibrous mat comprised of chitosan (CS) and poly(ethylene oxide) (PEO) was obtained as vaginal platform for tenofovir disoproxil fumarate (TDF) to prevent sexually transmitted infections. Apart from physicochemical and mechanical analysis, the specific steps involved studies on nanofibrous mat mucoadhesive and swelling characteristics upon pH fluctuations over the physiological range. Physicochemical analysis showed uniform drug distribution within the CS/PEO mat volume and pointed toward physical interactions between the drug and polymers. TDF-loaded CS/PEO nanofibrous mat was shown potentially safe when evaluated by the MTT metabolic activity and JC-1 assays in human vaginal epithelial cells VK2-E6/E7. In vitro antiviral studies indicated inhibition efficacy of TDF-CS/PEO nanofibrous mat toward HSV-2 virus and proved the SBS process does not change the microbicidal activity of drug molecule. Fluctuations in the physiological vaginal pH range of 3.8 to 5.0 substantially affected mucoadhesive and swelling behavior of chitosan which in turn impacted drug dissolution rate from polymer carrier. The rate of permeation and accumulation of TDF in vaginal tissue differed in response to vaginal pH. Faster drug permeation assessed at pH 5.0 suggests that an increase in vaginal pH could improve TDF bioavailability at earlier time points.


Assuntos
Quitosana , Nanofibras , Feminino , Humanos , Tenofovir/farmacologia , Quitosana/química , Nanofibras/química , Polietilenoglicóis/química , Portadores de Fármacos/química , Óxido de Etileno , Fumaratos , Polímeros/química , Concentração de Íons de Hidrogênio
10.
Pathogens ; 11(8)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-36014997

RESUMO

Mitochondria are key cellular organelles responsible for many essential functions, including ATP production, ion homeostasis and apoptosis induction. Recent studies indicate their significant role during viral infection. In the present study, we examined the effects of equine herpesvirus type 1 (EHV-1) infection on the morphology and mitochondrial function in primary murine neurons in vitro. We used three EHV-1 strains: two non-neuropathogenic (Jan-E and Rac-H) and one neuropathogenic (EHV-1 26). The organization of the mitochondrial network during EHV-1 infection was assessed by immunofluorescence. To access mitochondrial function, we analyzed reactive oxygen species (ROS) production, mitophagy, mitochondrial inner-membrane potential, mitochondrial mass, and mitochondrial genes' expression. Changes in mitochondria morphology during infection suggested importance of their perinuclear localization for EHV-1 replication. Despite these changes, mitochondrial functions were preserved. For all tested EHV-1 strains, the similarities in the increased fold expression were detected only for COX18, Sod2, and Tspo. For non-neuropathogenic strains (Jan-E and Rac-H), we detected mainly changes in the expression of genes related to mitochondrial morphology and transport. The results indicate that mitochondria play an important role during EHV-1 replication in cultured neurons and undergo specific morphological and functional modifications.

11.
Pathogens ; 11(7)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35890053

RESUMO

Neuroinflammation is defined as an inflammatory state within the central nervous system (CNS). Microglia conprise the resident tissue macrophages of the neuronal tissue. Upon viral infection of the CNS, microglia become activated and start to produce inflammatory mediators important for clearance of the virus, but an excessive neuroinflammation can harm nearby neuronal cells. Herpesviruses express several molecular mechanisms, which can modulate apoptosis of infected neurons, astrocytes and microglia but also divert immune response initiated by the infected cells. In this review we also describe the link between virus-related neuroinflammation, and development of neurodegenerative diseases.

12.
J Infect Dis ; 225(9): 1545-1553, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35217873

RESUMO

Tofacitinib, a Janus kinase inhibitor, is a novel immunosuppressive drug for treatment of rheumatoid arthritis. Herpes simplex virus type 1 (HSV-1) may cause encephalitis during primary infection or following reactivation from a latent state. Long-term tofacitinib treatment may increase the risk of this life-threatening condition. The aim of this study was to investigate the effect of tofacitinib on HSV-1 primary infection using a mouse model. Mice pretreated with tofacitinib were intranasally infected with a clinical strain of HSV-1 and monitored for infection severity and antiviral response. Tofacitinib treatment of HSV-1 primary infection resulted in increased viral loads and worsened clinical outcome. Furthermore, tofacitinib promoted M2 anti-inflammatory phenotype of microglia and infiltrating monocytes, as well as inhibited production of inflammatory and antiviral cytokines by macrophages in vitro. Our findings show that treatment with tofacitinib increases severity of herpes simplex encephalitis in mice, by impairing antiviral response induced by monocytes and microglia.


Assuntos
Encefalite por Herpes Simples , Herpes Simples , Herpesvirus Humano 1 , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Encefalite por Herpes Simples/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Piperidinas , Pirimidinas
13.
Microorganisms ; 10(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35056558

RESUMO

(1) Background: Lactoferrin has been recognized as a potent inhibitor of human herpetic viruses, such as herpes simplex type 1 (HSV-1) and 2 (HSV-2). In this work, we tested if silver and gold nanoparticles modified with lactoferrin (LF-Ag/AuNPs) can become novel microbicides with additional adjuvant properties to treat genital herpes infection. (2) Methods: The antiviral and cytotoxic activities of LF-Ag/AuNPs were tested in human skin HaCaT and vaginal VK-2-E6/E7 keratinocytes. Viral titers and immune responses after treatment with LF-Ag/AuNPs were tested in murine vaginal HSV-2 infection. (3) Results: LF-Ag/AuNPs inhibited attachment and entry of HSV-2 in human keratinocytes much better than lactoferrin. Furthermore, pretreatment with LF-AgNPs led to protection from infection. Infected mice treated intravaginally with LF-Ag/AuNPs showed lower virus titers in the vaginal tissues and spinal cords in comparison to treatment with lactoferrin. Following treatment, vaginal tissues showed a significant increase in CD8+/granzyme B + T cells, NK cells and dendritic cells in comparison to NaCl-treated group. LF-Ag/AuNPs-treated animals also showed significantly better expression of IFN-γ, CXCL9, CXCL10, and IL-1ß in the vaginal tissues. (4) Conclusions: Our findings show that LF-Ag/AuNPs could become effective novel antiviral microbicides with immune-stimulant properties to be applied upon the mucosal tissues.

14.
Drug Deliv ; 28(1): 2278-2288, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34668816

RESUMO

Chitosan glutamate (gCS) spray-dried microparticles appear promising carriers to overcome challenges associated with vaginal microbicide delivery. This study aimed at elucidating the penetration and mucoadhesive behavior of developed gCS multiunit carriers with zidovudine (ZVD) as a model antiretroviral agent in contact with excised human vaginal epithelium followed with an examination of in vitro antiherpes activity in immortal human keratinocytes HaCaT and human vaginal epithelial cells VK2-E6/E7. Both ZVD dispersion and placebo microparticles served as controls. Microparticles displayed feasible (comparable to commercial vaginal product) mucoadhesive and mucoretention characteristics to isolated human vaginal tissue. Ex vivo penetration studies revealed that gCS increased the accumulation of active agent in the vaginal epithelium but surprisingly did not facilitate its penetration across human tissue. Finally, the obtained antiviral results demonstrated the potential of gCS as an antiherpes adjunctive, whose mode of action was related to blocking viral attachment.


Assuntos
Antivirais/farmacologia , Herpes Labial/tratamento farmacológico , Nanopartículas/química , Vagina/efeitos dos fármacos , Zidovudina/farmacologia , Antivirais/administração & dosagem , Antivirais/farmacocinética , Quitosana/química , Portadores de Fármacos/química , Feminino , Ácido Glutâmico/química , Humanos , Queratinócitos , Tecnologia Farmacêutica , Zidovudina/administração & dosagem , Zidovudina/farmacocinética
15.
Front Immunol ; 12: 714821, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34526992

RESUMO

The Fas/FasL pathway plays a key role in immune homeostasis and immune surveillance. In the central nervous system (CNS) Fas/FasL is involved in axonal outgrowth and adult neurogenesis. However, little is known about the role of the Fas/FasL pathway in herpes encephalitis. In this study, we used a neuropathogenic clinical strain of herpes simplex virus type 1 (HSV-1) to explore infection-induced inflammation and immune responses in the mouse brain and the role of Fas/FasL in antiviral CNS immunity. HSV-1 CNS infection induced the infiltration of Fas- FasL-bearing monocytes and T cells in the brain and also to an up-regulation of Fas and FasL expression on resident astrocytes and microglia within infected sites. Upon infection, Fas- and FasL-deficient mice (lpr and gld) were partially protected from encephalitis with a decreased morbidity and mortality compared to WT mice. Fas/FasL deficiency promoted cell-mediated immunity within the CNS. Fas receptor stimulation abrogated HSV-1 induced activation and inflammatory reactions in microglia from WT mice, while lack of Fas or FasL led to a more pronounced activation of monocytes and microglia and also to an enhanced differentiation of these cells into a pro-inflammatory M1 phenotype. Furthermore, the specific immune system was more efficient in Fas- and FasL-deficient mice with significantly higher numbers of infiltrating HSV-1-specific cytotoxic T cells in the brain. Our data indicate that the Fas/FasL pathway leads to excessive neuroinflammation during HSV-1 infection, which is associated with a diminished anti-viral response and an excessive neuroinflammation.


Assuntos
Encefalite por Herpes Simples/etiologia , Encefalite por Herpes Simples/metabolismo , Proteína Ligante Fas/metabolismo , Herpesvirus Humano 1/fisiologia , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/metabolismo , Receptor fas/metabolismo , Animais , Biomarcadores , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças/imunologia , Encefalite por Herpes Simples/diagnóstico , Proteína Ligante Fas/genética , Humanos , Camundongos , Camundongos Knockout , Microglia/imunologia , Microglia/metabolismo , Doenças Neuroinflamatórias/diagnóstico , Receptor fas/genética
16.
Viruses ; 13(5)2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065826

RESUMO

The contribution of virus components to liberation of herpes simplex virus type 2 (HSV-2) progeny virions from the surface of infected cells is poorly understood. We report that the HSV-2 mutant deficient in the expression of a mucin-like membrane-associated glycoprotein G (mgG) exhibited defect in the release of progeny virions from infected cells manifested by ~2 orders of magnitude decreased amount of infectious virus in a culture medium as compared to native HSV-2. Electron microscopy revealed that the mgG deficient virions were produced in infected cells and present at the cell surface. These virions could be forcibly liberated to a nearly native HSV-2 level by the treatment of cells with glycosaminoglycan (GAG)-mimicking oligosaccharides. Comparative assessment of the interaction of mutant and native virions with surface-immobilized chondroitin sulfate GAG chains revealed that while the mutant virions associated with GAGs ~fourfold more extensively, the lateral mobility of bound virions was much poorer than that of native virions. These data indicate that the mgG of HSV-2 balances the virus interaction with GAG chains, a feature critical to prevent trapping of the progeny virions at the surface of infected cells.


Assuntos
Glicoproteínas/metabolismo , Herpes Simples/virologia , Herpesvirus Humano 2/fisiologia , Proteínas do Envelope Viral/metabolismo , Liberação de Vírus , Membrana Celular/metabolismo , Células Cultivadas , Glicoproteínas/genética , Herpesvirus Humano 2/ultraestrutura , Interações Hospedeiro-Patógeno , Humanos , Mutação , Proteínas do Envelope Viral/genética , Vírion/ultraestrutura
17.
Arch Virol ; 166(5): 1371-1383, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33715038

RESUMO

Herpesviruses are capable of infecting not only neurons, where they establish latent infection, but also astrocytes. Since astrocytes are important for the functioning of the central nervous system (CNS), their infection may lead to serious neurological disorders. Thus, in the present study we investigated the ability of human herpesvirus type 2 (HHV-2) to infect primary murine astrocytes in vitro and the effect of infection on their mitochondrial network and actin cytoskeleton. In immunofluorescence assays, antibodies against HHV-2 antigens and glial fibrillary acidic protein (GFAP) were used to confirm that the infected cells are indeed astrocytes. Real-time PCR analysis showed a high level of HHV-2 replication in astrocytes, particularly at 168 h postinfection, confirming that a productive infection had occurred. Analysis of mitochondrial morphology showed that, starting from the first stage of infection, HHV-2 caused fragmentation of the mitochondrial network and formation of punctate and tubular structures that colocalized with virus particles. Furthermore, during the late stages of infection, the infection affected the actin cytoskeleton and induced formation of actin-based cellular projections, which were probably associated with enhanced intracellular spread of the virus. These results suggest that the observed changes in the mitochondrial network and actin cytoskeleton in productively infected astrocytes are required for effective replication and viral spread in a primary culture of astrocytes. Moreover, we speculate that, in response to injury such as HHV-2 infection, murine astrocytes cultured in vitro undergo transformation, defined in vivo as reactive astrocytosis.


Assuntos
Citoesqueleto de Actina/patologia , Astrócitos/virologia , Herpesvirus Humano 2/fisiologia , Mitocôndrias/patologia , Citoesqueleto de Actina/metabolismo , Animais , Astrócitos/patologia , Células Cultivadas , Gliose , Cinética , Camundongos , Mitocôndrias/metabolismo , Vírion/metabolismo , Replicação Viral
18.
J Neurovirol ; 27(1): 145-153, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33492607

RESUMO

Herpes simplex virus type 2 (HSV-2) is a neurotropic virus that can cause meningitis, an inflammation of the meninges in the central nervous system. T cells are key players in viral clearance, and these cells migrate from peripheral blood into the central nervous system upon infection. Several factors contribute to T cell migration, including the expression of chemokines in the inflamed tissue that attract T cells through their expression of chemokine receptors. Here we investigated CD8+ T cell profile in the spinal cord in a mouse model of herpes simplex virus type 2 neuroinflammation. Mice were infected with HSV-2 and sacrificed when showing signs of neuroinflammation. Cells and/or tissue from spinal cord, spleen, and blood were analyzed for expression of activation markers, chemokine receptors, and chemokines. High numbers of CD8+ T cells were present in the spinal cord following genital HSV-2-infection. CD8+ T cells were highly activated and HSV-2 glycoprotein B -specific effector cells, some of which showed signs of recent degranulation. They also expressed high levels of many chemokine receptors, in particular CCR2, CCR4, CCR5, and CXCR3. Investigating corresponding receptor ligands in spinal cord tissue revealed markedly increased expression of the cognate ligands CCL2, CCL5, CCL8, CCL12, and CXCL10. This study shows that during herpesvirus neuroinflammation anti-viral CD8+ T cells accumulate in the CNS. CD8+ T cells in the CNS also express chemotactic receptors cognate to the chemotactic gradients in the spinal cord. This indicates that anti-viral CD8+ T cells may migrate to infected areas in the spinal cord during herpesvirus neuroinflammation in response to chemotactic gradients.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Herpes Simples/imunologia , Receptores CCR5/biossíntese , Receptores CXCR3/biossíntese , Medula Espinal/imunologia , Animais , Quimiotaxia de Leucócito/imunologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL
19.
Int J Nanomedicine ; 15: 4969-4990, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32764930

RESUMO

BACKGROUND: Polyphenols possess antioxidant, anti-inflammatory and antimicrobial properties and have been used in the treatment of skin wounds and burns. We previously showed that tannic acid-modified AgNPs sized >26 nm promote wound healing, while tannic acid-modified AgNPs sized 13 nm can elicit strong local inflammatory response. In this study, we tested bimetallic Au@AgNPs sized 30 nm modified with selected flavonoid and non-flavonoid compounds for wound healing applications. METHODS: Bimetallic Au@AgNPs were obtained by growing an Ag layer on AuNPs and further modified with selected polyphenols. After toxicity tests and in vitro scratch assay in HaCaT cells, modified lymph node assay as well as the mouse splint wound model were further used to access the wound healing potential of selected non-toxic modifications. RESULTS: Tannic acid, gallic acid, polydatin, resveratrol, catechin, epicatechin, epigallocatechin, epicatechin gallate, epigallocatechin gallate and procyanidin B2 used to modify Au@AgNPs exhibited good toxicological profiles in HaCaT cells. Au@AgNPs modified with 15 µM tannic acid, 200 µM resveratrol, 200 µM epicatechin gallate, 1000 µM gallic acid and 200 µM procyanidin B2 induced wound healing in vivo and did not lead to the local irritation or inflammation. Tannic acid-modified Au@AgNPs induced epithelial-to-mesenchymal transition (EMT) - like re-epithelialization, while other polyphenol modifications of Au@AgNPs acted through proliferation and wound closure. CONCLUSION: Bimetallic Au@AgNPs can be used as a basis for modification with selected polyphenols for topical uses. In addition, we have demonstrated that particular polyphenols used to modify bimetallic nanoparticles may show different effects upon different stages of wound healing.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Polifenóis/química , Polifenóis/farmacologia , Prata/química , Cicatrização/efeitos dos fármacos , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Biflavonoides/química , Catequina/análogos & derivados , Catequina/química , Camundongos , Proantocianidinas/química , Taninos/química
20.
J Neurovirol ; 25(6): 765-782, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31161588

RESUMO

Human herpesvirus types 1 and 2 (HHV-1 and HHV-2) are neurotropic viruses which remain latent for life and reactivate to cause recurrent infections. HHV-1 has been found to be involved in accumulation of ß-amyloid, hyperphosphorylation of tau proteins, and inflammation in the brain, which can later result in neuronal dysfunction and neurodegeneration. The relationship between HHV-2 and events associated with neurodegeneration has not been extensively studied. Neurons, more than any other cell type, depend on mitochondrial trafficking for their survival, and many types of mitochondrial abnormalities have been described in the etiology of neurodegenerative diseases. Therefore, in this study, we concentrated on mitochondrial dysfunction associated with HHV-1 and HHV-2 infection of primary murine neurons in vitro. We showed that starting from the first stages of HHV-1 and HHV-2 infection, an interaction of viral particles with the mitochondrial network occurs. Both HHV-1 and HHV-2 infection affected mitochondrial function at multiple levels, including upregulation of mitochondrial fission, decrease of the mitochondrial membrane potential, and increase of ROS level. The changes observed in the organization of the mitochondrial network and physiology of productively infected neurons provide appropriate conditions for HHV-1 and HHV-2 replication and are required for effective viral spread.


Assuntos
Infecções por Herpesviridae/virologia , Mitocôndrias/virologia , Dinâmica Mitocondrial , Neurônios/metabolismo , Neurônios/virologia , Animais , Células Cultivadas , Infecções por Herpesviridae/metabolismo , Herpesvirus Humano 1 , Herpesvirus Humano 2 , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA